## IJCAI 2025 Workshop on Deepfake Detection, Localization, and Interpretability



# Morphology-optimized Multi-Scale Fusion: Combining Local Artifacts and Mesoscopic Semantics for Deepfake Detection and Localization

Chao Shuai , Gaojian Wang, Kun Pan, Tong Wu, Fanli Jin, HaohanTan, Mengxiang Li, Zhenguang Liu, Feng Lin and Kui Ren

Speaker: Qing Wen 2025.08.29

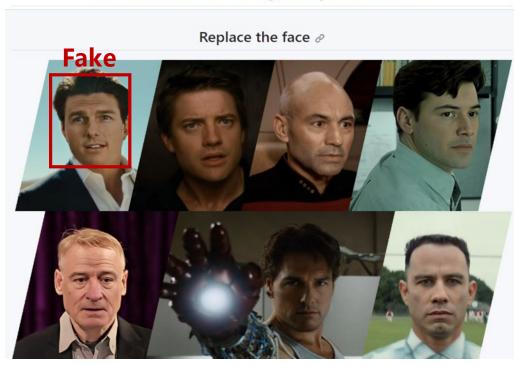


# Background



Deepfake has given rise to concerns about the misuse of fake videos fabricating people's words and actions.











# Challenge



#### Main Task:

- Detection
- Localization











Where?

#### Main Challenges:

- ✓ Diverse generative model
- ✓ Various Image Degradation
- ✓ Multi-Scale Faces
- ✓ Precisely Localization























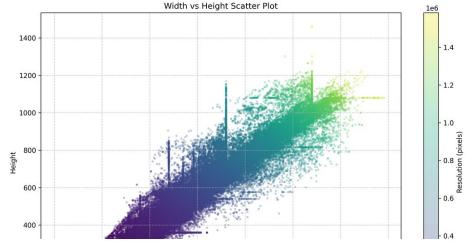






### > Image Analysis:

- ✓ Multi-faces ⇒ End-to-end Detection
- ✓ Multi-scale → Multi-scale features
- ✓ Strong degradation 
  → Data augmentation
- ✓ Multi-source → Self-built Forgery Dataset



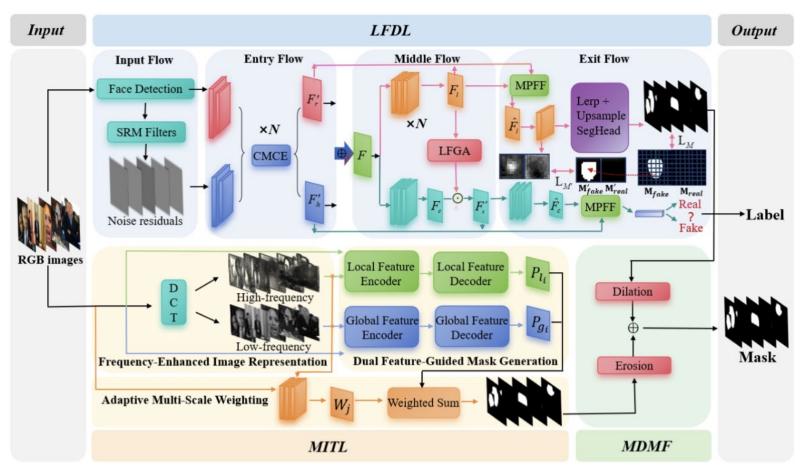
| Model Type      | Method             | Forgery Types          | Fake/Mask Image | Reference                     |
|-----------------|--------------------|------------------------|-----------------|-------------------------------|
| Image Edit      | SBIs               | FaceSwap               | 18135           | [Shiohara and Yamasaki, 2022] |
|                 | Random combination | FaceSwap               | 17728           | -                             |
| GAN             | Simswap            | FaceSwap               | 14999           | [Chen et al., 2020]           |
|                 | MaskFaceGAN        | Face Attribute Editing | 14999           | [Pernuš <i>et al.</i> , 2023] |
|                 | Facedancer         | FaceSwap               | 20000           | [Rosberg et al., 2023]        |
| Diffusion Model | BELM               | Diffusion Inversion    | 14674           | [Wang et al., 2024]           |
|                 | SD-inpanting       | Inpanting              | 18347           | [Podell et al., 2023]         |







#### Overview of our proposed framework



# Three key components:

- LFDL: Local Facial Forgery

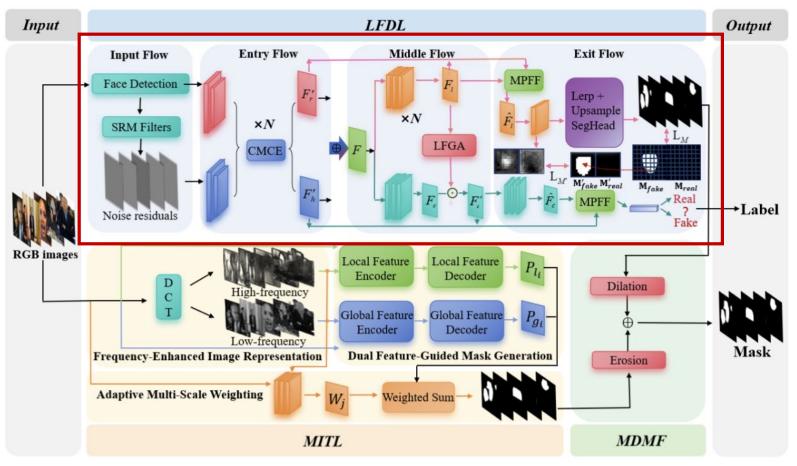
  Detection and Location
- MITL: Mesoscopic Image Tampering Localization
- MDMF: Morphology-Driven
   Mask Fusion for Comprehensive
   Forgery Localization







✓ LFDL: Local Facial Forgery Detection and Location



#### Key points:

- Align the resolution of the input faces
- Fuse the RGB-view and SRMview features
- Localization branch enhances
   the classification branch

#### Problem:

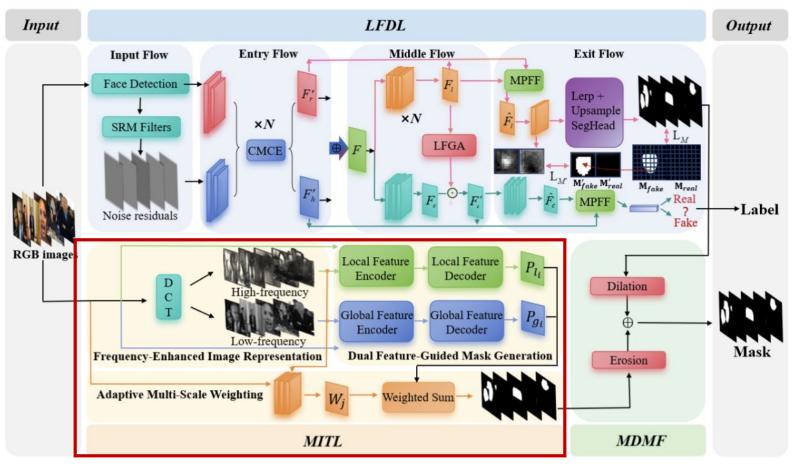
 Strongly degraded faces are not recognized and extracted !!!







✓ MITL: Mesoscopic Image Tampering Localization



#### Key points:

- End-to-end training is more suitable for multi-scale multi-face image
- Adaptive multi-scale and dual feature-guided mask generation

#### Problem:

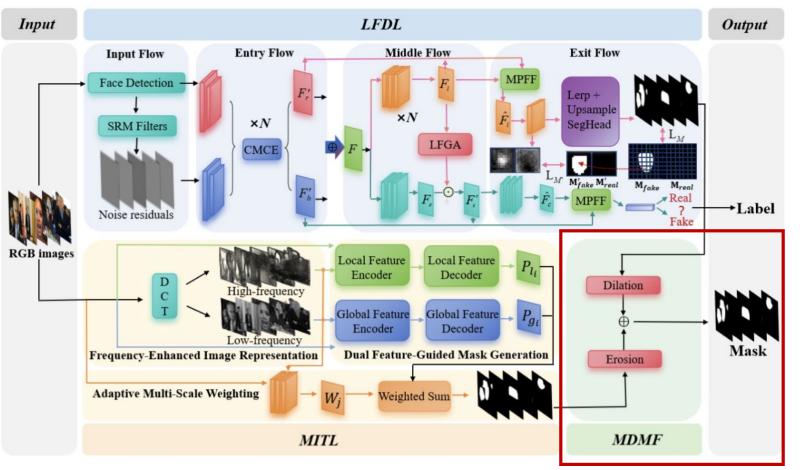
Error Detection and Missed
 Detection !!!







✓ MDMF: Morphology-Driven Mask Fusion



#### Key points:

- Apply a dilation operation to the M<sub>LFDL</sub> to smooth edges
- Apply an erosion operation to
   M<sub>MITL</sub> to loss of complete details

$$M_{\text{LFDL}} \oplus B = \{ z \in \mathbb{Z}^2 \mid (B)_z \cap M_{\text{LFDL}} \neq \emptyset \}$$

$$M_{\text{MITL}} \ominus B = \{ z \in \mathbb{Z}^2 \mid (B)_z \subseteq M_{\text{LFDL}} \}$$

$$M_{\text{final}} = (M_{\text{LFDL}} \oplus B) \cup (M_{\text{MITL}} \ominus B)$$





# Experiment



- DDL-I dataset
  - 1.5 million samples with pixel-level an-notations
  - > 61 latest deepfake methods
  - Four forgery types
  - Single-face and multi-face scenarios

| Datasets                 | Publication | Tasks     | Latest Deepfake              | Methods | Image | Video | Audio | #Fake |
|--------------------------|-------------|-----------|------------------------------|---------|-------|-------|-------|-------|
| FaceForensics++ [33]     | ICCV' 19    | Cla       | NeuralTextures [37] (2019)   | 4       | 0     | 4     | 0     | 4K    |
| Celeb-DF [23]            | CVPR' 20    | Cla       | Unknown                      | 1       | 0     | 1     | 0     | 5K+   |
| DeeperForensics-1.0 [16] | CVPR' 20    | Cla       | DF-VAE [16] (2020)           | 1       | 0     | 1     | 0     | 10K   |
| DFDC [8]                 | Arxiv' 20   | Cla       | StyleGAN [17] (2018)         | 8       | 1     | 6     | 1     | 0.1M+ |
| FFIW [46]                | CVPR' 21    | Cla/SL    | FSGAN [28] (2019)            | 3       | 0     | 3     | 0     | 10K   |
| OpenForensics [22]       | ICCV' 21    | SL        | InterFaceGAN (2020)          | 2       | 2     | 0     | 0     | 0.1M  |
| FakeAVCeleb [20]         | NeurIPS' 21 | Cla       | Wav2Lip [30] (2021)          | 4       | 0     | 1     | 3     | 19K+  |
| ForgeryNet [13]          | CVPR' 21    | Cla/TL/SL | StarGANv2 [18] (2020)        | 15      | 7     | 8     | 0     | 1.4M+ |
| LAV-DF [2]               | DICTA' 22   | Cla/TL    | Wav2Lip [30] (2021)          | 2       | 0     | 1     | 1     | 0.1M+ |
| DeepFakeFace [35]        | ArXiv'23    | Cla       | Stable-Diffusion [32] (2021) | 3       | 3     | 0     | 0     | 90K   |
| DiffusionDeepfake [1]    | ArXiv'24    | Cla       | Stable-Diffusion [32] (2021) | 3       | 3     | 0     | 0     | 0.1M+ |
| AV-Deepfake1M [3]        | MM' 24      | Cla/TL    | TalkLip (2023)               | 3       | 0     | 1     | 2     | 0.8M+ |
| DF40 [41]                | NeurIPS' 24 | Cla       | PixArt-α [4] (2024)          | 40      | 17    | 23    | 0     | 1.1M+ |
| DDL                      | 2025        | Cla/TL/SL | Kling-2.1 (2025)             | 75      | 40    | 26    | 9     | 1.8M+ |

Multi-face Scenario

Single-face Scenario

Fake

Mask

DDL-I dataset

Example of DDL-I dataset



Morphology-optimized Multi-Scale Fusion: Combining Local Artifacts and Mesoscopic Semantics for Deepfake Detection and Localization



# Experiment



We compared the performance of different models and mask merge strategy.

| Method                          | Detection AUC | F1-score | IoU    | Final Score |
|---------------------------------|---------------|----------|--------|-------------|
| LFDL                            | 0.9790        | 0.6840   | 0.5981 | 0.7497      |
| MITL                            | -             | -        | -      | 0.2349      |
| LFDL + MITL                     | -             | -        | -      | 0.3200      |
| LFDL + MITL + Mask Naive Fusion | 0.9790        | 0.7598   | 0.6657 | 0.8015      |
| LFDL + MITL + MDMF              | 0.9790        | 0.7759   | 0.6902 | 0.8150      |

The LFDL module offers precise local forgery detection, while the MDMF module complements forgery masks by providing global contextual information.

Note that MITL does not converge until we submit our results.

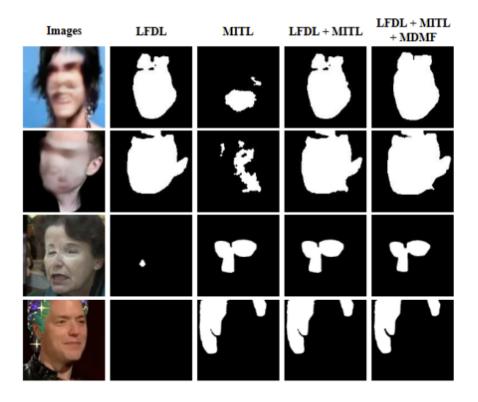




# Experiment



Visualization results of our methods. We apply dilation to LFDL masks and erosion to MITL masks, then combine them to achieve precise and coherent forgery localization.







# Thank you for listening

